Multilevel and longitudinal modeling using Stata.
Volume II Categorical responses, counts, and survival
Sophia Rabe-Hesketh, Anders Skrondal.
Loading copies
Document is not available
No copies
Document has no bound volumes
Contents
List of tables xvii
List of figures xix
List of displays xxv
V Models for categorical responses 555
10 Dichotomous or binary responses 557
10.1 Introduction..............................................................557
10.2 Single-level logit and probit regression models for dichotomous
responses.................................................................557
10.2.1 Generalized linear model formulation...............................558
Labor-participation data......................................... 561
Estimation using logit........................................... 561
Estimation using glm..............................................565
10.2.2 Latent-response formulation........................................566
Logistic regression...............................................568
Probit regression.................................................568
Estimation using probit...........................................569
10.3 Which treatment is best for toenail infection?............................571
10.4 Longitudinal data structure ..............................................571
10.5 Proportions and fitted population-averaged or marginal
probabilities.............................................................573
Estimation using logit............................................575
10.6 Random-intercept logistic regression......................................577
10.6.1 Model specification...............................................577
Reduced-form specification....................................... 577
Two-stage formulation.............................................578
vi Contents
10.6.2 Model assumptions....................................................578
10.6.3 Estimation ......................................................... 579
Using xtlogit.......................................................580
Using melogit.......................................................584
Using gllamm........................................................585
10.7 Subject-specific or conditional versus population-averaged or
marginal relationships......................................................586
10.8 Measures of dependence and heterogeneity.....................................590
10.8.1 Conditional or residual intraclass correlation of the latent responses.................................................................. 590
10.8.2 Median odds ratio................................................... 591
10.8.3 ♦♦♦ Measures of association for observed responses at median fixed part of the model................................................592
10.9 Inference for random-intercept logistic models...............................594
10.9.1 Tests and confidence intervals for odds ratios.....................594
10.9.2 Tests of variance components.....................................595
10.10 Maximum likelihood estimation..............................................596
10.10.1 ♦♦♦ Adaptive quadrature.............................................596
10.10.2 Some speed and accuracy considerations..............................599
Integration methods and number of quadrature points . . . 599
Starting values.....................................................601
Using melogit and gllamm for collapsible data.......................602
Spherical quadrature in gllamm......................................602
10.11 Assigning values to random effects........................................ 603
10.11.1 Maximum “likelihood” estimation ................................... 603
10.11.2 Empirical Bayes prediction..........................................604
10.11.3 Empirical Bayes modal prediction ...................................606
10.12 Different kinds of predicted probabilities.................................608
10.12.1 Predicted population-averaged or marginal probabilities . . 608
10.12.2 Predicted subject-specific probabilities............................609
Contents ѴІІ
Predictions for hypothetical subjects: Conditional probabilities ........................................................609
Predictions for the subjects in the sample: Posterior mean
probabilities.......................................... 611
10.13 Other approaches to clustered dichotomous data............................ 617
10.13.1 Conditional logistic regression................................. 617
Estimation using clogit...........................................618
10.13.2 Generalized estimating equations (GEE).......................... 619
Estimation using xtgee............................................620
10.14 Summary and further reading............................................... 622
10.15 Exercises................................................................. 624
11 Ordinal responses 635
11.1 Introduction................................................................635
11.2 Single-level cumulative models for ordinal responses........................635
11.2.1 Generalized linear model formulation............................ 636
11.2.2 Latent-response formulation..................................... 637
11.2.3 Proportional odds .............................................. 641
11.2.4 ♦♦♦ Identification...............................................642
11.3 Are antipsychotic drugs effective for patients with schizophrenia? . 645
11.4 Longitudinal data structure and graphs..................................... 645
11.4.1 Longitudinal data structure..................................... 646
11.4.2 Plotting cumulative proportions................................. 647
11.4.3 Plotting cumulative sample logits and transforming the
time scale....................................................... 648
11.5 Single-level proportional-odds model .......................................650
11.5.1 Model specification............................................. 650
Estimation using ologit ......................................... 651
11.6 Random-intercept proportional-odds model................................... 654
11.6.1 Model specification............................................. 654
Estimation using meologit.........................................654
Estimation using gllamm ..........................................655
viii
Contents
11.6.2 Measures of dependence and heterogeneity..........................657
Residual intraclass correlation of latent responses...............657
Median odds ratio.................................................657
11.7 Random-coefficient proportional-odds model................................658
11.7.1 Model specification................................................658
Estimation using meologit.........................................658
Estimation using gllamm ......................................... 660
11.8 Different kinds of predicted probabilities................................662
11.8.1 Predicted population-averaged or marginal probabilities . . 662
11.8.2 Predicted subject-specific probabilities: Posterior mean . . 665
11.9 Do experts differ in their grading of student essays?.....................669
11.10 A random-intercept probit model with grader bias..........................670
11.10.1 Model specification...............................................670
Estimation using gllamm ......................................... 670
11.11 Including grader-specific measurement-error variances.....................672
11.11.1 Model specification...............................................672
Estimation using gllamm ..........................................673
11.12 ♦♦♦ Including grader-specific thresholds..................................675
11.12.1 Model specification...............................................675
Estimation using gllamm ..........................................676
11.13 Other link functions..................................................681
Cumulative complementary log-log model............................681
Continuation-ratio logit model....................................681
Adjacent-category logit model.....................................683
Baseline-category logit and stereotype models.....................683
11.14 Summary and further reading...............................................684
11.15 Exercises................................................................ 685
12 Nominal responses and discrete choice 695
12.1 Introduction..............................................................695
12.2 Single-level models for nominal responses..............................696
ix
696
700
701
705
707
710
711
712
713
714
715
716
718
721
721
722
723
723
724
725
731
735
737
739
741
742
744
745
12.2.1 Multinomial logit models ........................................
Transport data version 1.......................................
Estimation using mlogit........................................
12.2.2 Conditional logit models with alternative-specific covariates
Transport data version 2: Expanded form........................
Estimation using clogit........................................
Estimation using cmclogit......................................
12.2.3 Conditional logit models with alternative- and unit-specific covariates..............................................................
Estimation using clogit........................................
Estimation using cmclogit......................................
Independence from irrelevant alternatives...............................
Utility-maximization formulation .......................................
Does marketing affect choice of yogurt?.................................
Single-level conditional logit models...................................
12.6.1 Conditional logit models with alternative-specific intercepts
Estimation using clogit........................................
Estimation using cmclogit......................................
Multilevel conditional logit models.....................................
12.7.1 Preference heterogeneity: Brand-specific random intercepts
Estimation using cmxtmixlogit..................................
Estimation using gllamm .......................................
12.7.2 Response heterogeneity: Marketing variables with random coefficients........................................................
Estimation using cmxtmixlogit..................................
Estimation using gllamm .......................................
12.7.3 ♦♦♦ Preference and response heterogeneity .......................
Estimation using cmxtmixlogit..................................
Estimation using gllamm .......................................
Prediction of marginal choice probabilities.............................
x Contents
12.9 Prediction of random effects and household-specific choice probabilities .......................................................................747
12.10 Summary and further reading...............................................751
12.11 Exercises................................................................ 753
VI Models for counts 761
13 Counts 763
13.1 Introduction............................................................. 763
13.2 What are counts?......................................................... 763
13.2.1 Counts versus proportions.......................................... 763
13.2.2 Counts as aggregated event-history data............................ 764
13.3 Single-level Poisson models for counts................................... 765
13.4 Did the German healthcare reform reduce the number of doctor
visits?................................................................... 767
13.5 Longitudinal data structure ............................................. 767
13.6 Single-level Poisson regression.......................................... 768
13.6.1 Model specification................................................ 768
Estimation using poisson ........................................ 769
Estimation using glm............................................. 771
13.7 Random-intercept Poisson regression...................................... 772
13.7.1 Model specification................................................ 772
13.7.2 Measures of dependence and heterogeneity............................773
13.7.3 Estimation .........................................................773
Using xtpoisson.................................................. 773
Using mepoisson.................................................. 775
Using gllamm..................................................... 776
13.8 Random-coefficient Poisson regression.................................... 778
13.8.1 Model specification.............................................. 778
Estimation using mepoisson....................................... 779
Estimation using gllamm ......................................... 782
13.9 Overdispersion in single-level models.................................... 784
Contents xi
13.9.1 Normally distributed random intercept............................784
Estimation using xtpoisson........................................ 785
13.9.2 Negative binomial models........................................... 786
Mean dispersion or NB2............................................ 786
Constant dispersion or NB1........................................ 788
13.9.3 Quasilikelihood.................................................... 788
Estimation using glm.............................................. 789
13.10 Level-1 overdispersion in two-level models ................................ 790
13.10.1 Random-intercept Poisson model with robust standard
errors............................................................ 791
Estimation using mepoisson........................................ 791
13.10.2 Three-level random-intercept model................................ 792
13.10.3 Negative binomial models with random intercepts ...................792
Estimation using menbreg.......................................... 793
13.10.4 The HHG model..................................................... 794
13.11 Other approaches to two-level count data................................... 794
13.11.1 Conditional Poisson regression.................................... 794
Estimation using xtpoisson, fe.................................... 796
Estimation using Poisson regression with dummy variables for clusters................................................ 796
13.11.2 Conditional negative binomial regression.......................... 797
13.11.3 Generalized estimating equations.................................. 797
Estimation using xtgee............................................ 798
13.12 Marginal and conditional effects when responses are MAR................799
♦♦♦ Simulation.................................................... 799
13.13 Which Scottish counties have a high risk of lip cancer?...................803
13.14 Standardized mortality ratios ............................................. 804
13.15 Random-intercept Poisson regression.........................................806
13.15.1 Model specification................................................806
Estimation using gllamm .......................................... 807
13.15.2 Prediction of standardized mortality ratios .......................808
xii Contents
13.16 ♦♦♦ Nonparametric maximum likelihood estimation.........................811
13.16.1 Specification ..................................................811
Estimation using gllamm ........................................811
13.16.2 Prediction......................................................816
13.17 Summary and further reading.............................................816
13.18 Exercises...............................................................818
VII Models for survival or duration data 827
Introduction to models for survival or duration data (part VII) 829
14 Discrete-time survival 835
14.1 Introduction.............................................................835
14.2 Single-level models for discrete-time survival data......................835
14.2.1 Discrete-time hazard and discrete-time survival..................835
Promotions data.................................................835
14.2.2 Data expansion for discrete-time survival analysis...............838
14.2.3 Estimation via regression models for dichotomous
responses.......................................................840
Estimation using logit..........................................842
14.2.4 Including time-constant covariates...............................845
Estimation using logit..........................................846
14.2.5 Including time-varying covariates................................849
Estimation using logit..........................................853
14.2.6 Multiple absorbing events and competing risks....................855
Estimation using mlogit.........................................858
14.2.7 Handling left-truncated data.....................................860
14.3 How does mother’s birth history affect child mortality?..................861
14.4 Data expansion.......................................................... 862
14.5 ♦♦♦ Proportional hazards and interval-censoring......................... 864
14.6 Complementary log-log models.............................................865
14.6.1 Marginal baseline hazard .......................................866
Estimation using cloglog....................................... 867
Contents xiii
14.6.2 Including covariates........................................................................................................868
Estimation using cloglog....................................................................................................869
14.7 Random-intercept complementary log-log model........................................................................................872
14.7.1 Model specification ........................................................................................................872
Estimation using mecloglog..................................................................................................872
14.8 ♦♦♦ Population-averaged or marginal vs. cluster-specific or conditional survival probabilities 875
14.9 Summary and further reading.........................................................................................................879
14.10 Exercises • • • 880
15 Continuous-time survival 887
15.1 Introduction........................................................................................................................887
15.2 What makes marriages fail?........................................................................................................ 888
15.3 Hazards and survival............................................................................................................... 889
15.4 Proportional hazards models.........................................................................................................895
15.4.1 Piecewise exponential model..................................................................................................897
Estimation using streg......................................................................................................900
Estimation using poisson ...................................................................................................905
15.4.2 Cox regression model..............................................................................................906
Estimation using stcox......................................................................................................907
15.4.3 Cox regression via Poisson regression for expanded data . . 910
Estimation using xtpoisson, fe............................................................................................911
15.4.4 Approximate Cox regression: Poisson regression,
smooth baseline hazard......................................................................................................911
Estimation using poisson ...................................................................................................912
15.5 Accelerated failure-time models....................................................................................................914
15.5.1 Log-normal model ..........................................................................................................916
Estimation using streg......................................................................................................917
Estimation using stintreg...................................................................................................919
15.6 Time-varying covariates.............................................................................................................920
Estimation using streg . ..................................................................................................923
15.7 Does nitrate reduce the risk of angina pectoris?....................................................................................924
xiv Contents
15.8 Marginal modeling ........................................................926
15.8.1 Cox regression with occasion-specific dummy variables . . . 927 Estimation using stcox....................................................928
15.8.2 Cox regression with occasion-specific baseline hazards . . . 929 Estimation using stcox, strata............................................930
15.8.3 Approximate Cox regression.........................................930
Estimation using poisson .........................................932
15.9 Multilevel proportional hazards models....................................933
15.9.1 Cox regression with gamma shared frailty...........................934
Estimation using stcox, shared....................................935
15.9.2 Approximate Cox regression with log-normal shared frailty 938 Estimation using mepoisson................................................939
15.9.3 Approximate Cox regression with normal random intercept and coefficient......................................................940
Estimation using mepoisson........................................942
15.10 Multilevel accelerated failure-time models................................943
15.10.1 Log-normal model with gamma shared frailty........................943
Estimation using streg............................................944
15.10.2 Log-normal model with log-normal shared frailty...................945
Estimation using mestreg..........................................946
15.10.3 Log-normal model with normal random intercept and random coefficient........................................................947
Estimation using mestreg..........................................948
15.11 Fixed-effects approach ...................................................949
15.11.1 Stratified Cox regression with subject-specific baseline hazards...................................................................949
Estimation using stcox, strata....................................950
15.12 ♦♦♦ Different approaches to recurrent-event data .........................951
15.12.1 Total-time risk interval..........................................952
15.12.2 Counting-process risk interval....................................956
15.12.3 Gap-time risk interval............................................958
Contents
XV
15.13 Summary and further reading.............................................. 959
15.14 Exercises................................................................ 960
VIII Models with nested and crossed random effects 969
16 Models with nested and crossed random effects 971
16.1 Introduction..............................................................971
16.2 Did the Guatemalan-immunization campaign work?............................971
16.3 A three-level random-intercept logistic regression model..................973
16.3.1 Model specification................................................ 974
16.3.2 Measures of dependence and heterogeneity............................974
Types of residual intraclass correlations of the latent
responses............................................... 974
Types of median odds ratios...................................... 975
16.3.3 Three-stage formulation............................................ 975
16.3.4 Estimation ........................................................ 976
Using melogit.................................................... 976
Using gllamm..................................................... 980
16.4 A three-level random-coefficient logistic regression model................984
16.4.1 Estimation ........................................................ 985
Using melogit.................................................... 985
Using gllamm..................................................... 988
16.5 Prediction of random effects............................................. 991
16.5.1 Empirical Bayes prediction......................................... 991
16.5.2 Empirical Bayes modal prediction .................................. 993
16.6 Different kinds of predicted probabilities............................... 994
16.6.1 Predicted population-averaged or marginal probabilities:
New clusters .................................................... 994
16.6.2 Predicted median or conditional probabilities.......................995
16.6.3 Predicted posterior mean probabilities: Existing clusters . . 996
16.7 Do salamanders from different populations mate successfully? . . . 998
16.8 Crossed random-effects logistic regression...............................1000
16.8Đ› Setup for estimating crossed random-effects model using
melogit .....................................................1001
16.8.2 Approximate maximum likelihood estimation....................1003
Estimation using melogit ....................................1003
16.8.3 Bayesian estimation..........................................1007
Brief introduction to Bayesian inference.....................1007
Priors for the salamander data...............................1010
Estimation using bayes: melogit .............................1011
16.8.4 Estimates compared...........................................1019
16.8.5 Fully Bayesian versus empirical Bayesian inference for random effects.......................................................1020
16.9 Summary and further reading............................................1026
16.10 Exercises.............................................................1027
A Syntax for gllamm, eq, and gllapred: The bare essentials 1035
Đ’ Syntax for gllamm 1041
С Syntax for gllapred 1053
D Syntax for gllasim 1057
References 1061
Author index 1077
Subject index 1085
Field | Ind | Field content |
leader | -----nam-a22------i-4500 | |
1 | kpw01261728 | |
3 | CZ PrSKC | |
5 | 20220722144400.6 | |
7 | ta | |
8 | 220107s2022----xxua||||||||||001|0|eng|d | |
20 | ## | $a 978-1-59718-138-9 $q (brožováno) $z 1-59718-138-2 |
20 | ## | $a 978-1-59718-136-5 $q (set) $z 1-59718-136-6 |
40 | ## | $a ABB019 $b cze $e rda |
41 | 0# | $a eng |
72 | #7 | $a 004.4/.6 $x Programování. Software $2 Konspekt $9 23 |
72 | #7 | $a 311 $x Statistika $2 Konspekt $9 4 |
80 | ## | $a 004.42Stata $2 MRF |
80 | ## | $a 311 $2 MRF |
80 | ## | $a 519.254 $2 MRF |
80 | ## | $a 519.22 $2 MRF |
80 | ## | $a 303.732.3 $2 MRF |
80 | ## | $a (048.8:082) $2 MRF |
100 | 1# | $a Rabe-Hesketh, Sophia $7 uk2009425339 $4 aut $e Autor |
245 | 10 | $a Multilevel and longitudinal modeling using Stata. $n Volume II, $p Categorical responses, counts, and survival/ $c Sophia Rabe-Hesketh, Anders Skrondal. |
250 | ## | $a Fourth edition |
264 | #1 | $a College Station : $b Stata Press, $c 2022. |
300 | ## | $a xxiii, 557-1098 stran : $b ilustrace. |
336 | ## | $a text $b txt $2 rdacontent |
337 | ## | $a bez média $b n $2 rdamedia |
338 | ## | $a svazek $b nc $2 rdacarrier |
504 | ## | $a Obsahuje bibliografii a rejstřík |
650 | 07 | $a Stata (software) $7 ph799925 $2 czenas |
650 | 07 | $a statistika $7 ph116273 $2 czenas |
650 | 07 | $a zpracování dat $7 ph127675 $2 czenas |
650 | 07 | $a lineární modely $7 ph519313 $2 czenas |
650 | 07 | $a víceúrovňová analýza $7 ph436848 $2 czenas |
650 | 09 | $a Stata (software) $2 eczenas |
650 | 09 | $a statistics $2 eczenas |
650 | 09 | $a data processing $2 eczenas |
650 | 09 | $a linear models $2 eczenas |
650 | 09 | $a multilevel analysis $2 eczenas |
655 | #7 | $a kolektivní monografie $7 fd501537 $2 czenas |
655 | #9 | $a collective monographs $2 eczenas |
700 | 1# | $a Skrondal, Anders $7 mub2011626997 $4 aut $e Autor |
900 | $a ABB019 $b 14 | |
910 | ## | $a BOD006 |
1000 | $a 08 Informační technologie, výpočetní technika ; $b 8D Sítě, databáze |
{{$parent.item.lendDate | jpDate:'d.M.yyyy'}}
{{$parent.item.endDate | jpDate:'d.M.yyyy'}}
{{$parent.item.state | loc}} by user {{$parent.item.user | loc}}
Item {{$parent.item.exemplar | loc}}
Dept {{$parent.item.department | loc}}